CITIZEN

Galvanometer Optical Scanner

CITIZEN CHIBA PRECISION CO., LTD.

https://ccj.citizen.co.jp/en

Galvanometer Optical Scanner & Driver

■ Galvanometer Optical Scanner (also called as galvo scanner / galvano motor / galvanometer mirror scanner) is the motor with high precision position sensor which detects position to adjust the scan angle of the mirror reflecting laser beam. It has a variety of applications in combination with laser beam, such as laser marker, confocal microscopes, and LiDAR.

Features

- Fast response / Low inertia / High torque
- High linearity and positioning accuracy
- Superior temperature characteristics and minimal humidity effect

Examples of Application

- Laser marking
- Laser microscope
- Image capturing
- Laser drilling, trimming and cutting
- Non-contact sensoring and measuring
- High speed printing

Contents

Features •	Examples of	Application	p.1
Scanner:	Scanner Selection	· Model Number	p.2
	GVM-0930S		p.3
	GVM-0930L		p.4
	GVM-1445S		p.5
	GVM-1445L		p.6
	GVM-2260		p.7
	GVM-2280		p.8
	GVM-2510		p.9
	GVM-2260/ 0	GVM-2280/ GVM-2510 • Connector Pin Sequence	p.10
	GVM-0930/ 0	GVM-1445 • Dedicated Connection Cable	p.10
Mirror : Mirr	or Selection · Mo	del Number	p.11
Mirr	or Substrate / Reco	ommended Coating, Mirror Assembly - Reflectance Data	p.12
Mirr	or Assembly Draw	ing	p.13
		2	p.14
Driver : GVI	D0/ GVD1/ GVD	02 • External Layout Drawing • Specifications	p.15
Mod	del Number ······		p.18
Terms and	Definitions		p.19
Memo ·····			p.21

Scanner Selection

Models	Laser Beam Diameter (mm)						Method to Fix	
Models	φ3	φ5	φ 7.5	φ 10	φ 15	φ 20	φ 30	*Mirror Assembly
GVM-0930S	•	0						
GVM-0930L	•	0						Fixed to shaft by adhesive
GVM-1445S		•	0					Tired to share by deficitive
GVM-1445L				0				
GVM-2260				•				
GVM-2280				0	•			Fixed to shaft by clampe with screws
GVM-2510						•	0	

Recommended

Scanner Model Number

GVM - 1445S - 0 0 1 0 M - **

Scanner Type

0930S / 0930L 1445S / 1445L 2260 / 2280 / 2510

Scanning Angle (Mechanical Angle)

 $0:\pm 10^\circ$ Bumpers set for $\pm 10^\circ$ scanning $1:\pm 15^\circ$ Bumpers set for $\pm 15^\circ$ scanning $2:\pm 20^\circ$ Bumpers set for $\pm 20^\circ$ scanning C: Custom Bumpers set for customized angle

Cable Length

0 : GVM-0930, GVM-1445 / Connectors are placed on board

1:500mm

2:1000mm 3:2000mm

4:3000mm 5:300mm

 $C: Custom \, / \, Customized \, cable \, length$

Form of the Top Shaft

0: Straight (GVM-2260, GVM-2280 and GVM-2510 are all 0)

1: With Mirror Holder (GVM-0930 S/L and GVM-1445 S/L are all 1)

C: Custom / Customized Shaft

Registered Custom Number

No Number: Standard Product
*It is only used for customized
products

With or Without Mirror

0 : Without mirrorM : With mirror

Mirror Angle Against Cable

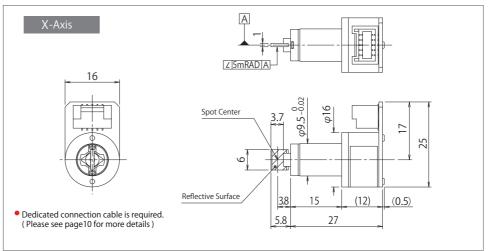
0:0° (It is also 0 when without mirror)

1:+45° +45° to connector 2:-45° -45° to connector 3:-90° -90° to connector 4:+90° +90° to connector 5:+180° +180° to connector 6:-135° -135° to connector 7:+135° +135° to connector

C: Custom Customized angle to connector

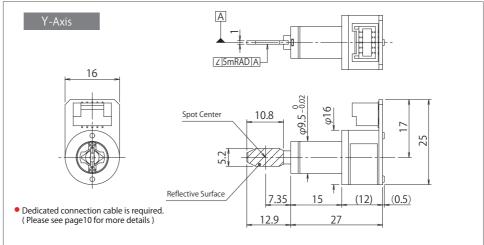
(Please see page 14 for more details.)

Available


^{*}Mirror Assembly: combination of a galvano mirror and a mirror holder

■ GVM-0930S

■ This drawing indicates the combination with GM7 mirror assembly.


(Unit: mm)

Connector Pin Assignment

SM10B-ZPDSS-TF (J.S.T.)				
Pin No.	Function			
1	A			
2	В			
3	PD COM			
4	AGC RETURN			
5	AGC IN			
6	SHIELD			
7	SHIELD			
8	SHIELD			
9	- MOTOR WINDING			
10	+ MOTOR WINDING			

•		
Items	Unit	GVM-0930S
Maximum Scan Angle (Mechanical Angle)	deg mech.	± 20
Rotor Inertia	g·cm²	0.012
Coil Resistance	Ω	2.5 ± 10%
Coil Inductance	mH	0.054 ± 10%
Torque Constant	mN·m/ A	1.28 ± 10%
Back EMF Voltage	mV/ deg/ sec	0.0224 ± 10%
Peak Current	A	9 (Maximum)
Maximum Coil Temperature	°C	110
Weight	g	15

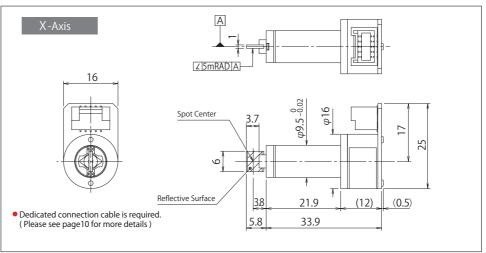
Repeatability		μ rad	8
Non-Linearity	(±10°)	%	0.1 (Maximum)
Offset Drift		μ rad/ °C	10 (Maximum)
Gain Drift		ppm/°C	50 (Maximum)
Step Response Time		μsec	*Please see the cautions below
Output Cianal	Common Mode	μΑ	330
Output Signal	Differential Mode	μ A/ deg	11
Input Signal		mA	30

- * The values of the specification are based on the combination of Citizen Chiba Precision Servo Driver and Mirror.
- * All angles shown are in mechanical angles.

 * We can provide the data including step response time by preferred combination of the mirror size and the scanner. Please contact our sales representatives for more details.

 (Some combinations may not be available.)

Galvanometer Optical Scanner


Scanner

GVM-0930L

■ This drawing indicates the combination with GM7 mirror assembly.

(Unit: mm)

Connector Pin Assignment

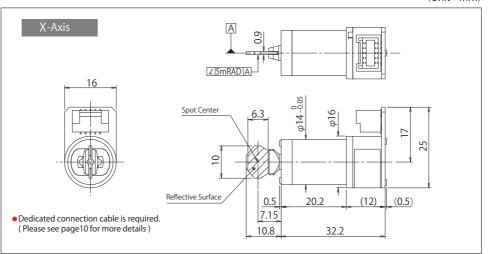
SM10B-ZPDSS-TF (J.S.T.)				
Function				
A				
В				
PD COM				
AGC RETURN				
AGC IN				
SHIELD				
SHIELD				
SHIELD				
- MOTOR WINDING				
+ MOTOR WINDING				

Items	Unit	GVM-0930L
Maximum Scan Angle (Mechanical Angle)	deg mech.	± 20
Rotor Inertia	g·cm²	0.016
Coil Resistance	Ω	1.9 ± 10%
Coil Inductance	mH	0.052 ± 10%
Torque Constant	mN·m/A	1.9 ± 10%
Back EMF Voltage	mV/ deg/ sec	0.0338 ± 10%
Peak Current	А	10 (Maximum)
Maximum Coil Temperature	°C	110
Weight	g	18

Repeatability		μ rad	8
Non-Linearity	(±10°)	%	0.1 (Maximum)
Offset Drift		μrad/°C	10 (Maximum)
Gain Drift		ppm/°C	50 (Maximum)
Step Response Time		μsec	*Please see the cautions below
Outnot Simual	Common Mode	μΑ	350
Output Signal	Differential Mode	μA/ deg	11
Input Signal		mA	30

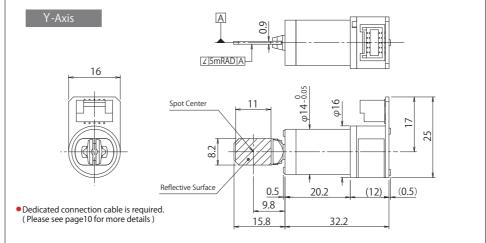
^{*} The values of the specification are based on the combination of Citizen Chiba Precision Servo Driver and Mirror.

* All angles shown are in mechanical angles.


* We can provide the data including step response time by preferred combination of the mirror size and the scanner. Please contact our sales representatives for more details. (Some combinations may not be available).

■ GVM-1445S

■ This drawing indicates the combination with GM0 mirror assembly.


(Unit: mm)

■ Connector Pin Assignment

SM10B-ZPDSS-TF (J.S.T.)				
Pin No.	Function			
1	A			
2	В			
3	PD COM			
4	AGC RETURN			
5	AGC IN			
6	SHIELD			
7	SHIELD			
8	SHIELD			
9	 MOTOR WINDING 			
10	+ MOTOR WINDING			

Unit	GVM-1445S
deg mech.	± 20
g∙cm²	0.059
Ω	1.8 ± 10%
mH	0.057 ± 10%
mN·m/ A	2.8 ± 10%
mV/ deg/ sec	0.049 ± 10%
A	12 (Maximum)
°C	110
g	28
	deg mech. g·cm² Ω mH mN·m/ A mV/ deg/ sec A ° C

Repeatability		μ rad	8
Non-Linearity	(±10°)	%	0.1 (Maximum)
Offset Drift		μ rad/ °C	10 (Maximum)
Gain Drift		ppm/°C	50 (Maximum)
Step Response Time		μsec	*Please see the caution below
Output Signal	Common Mode	μΑ	350
Output signal	Differrential Mode	μ A/ deg	11
Input Signal		mA	30

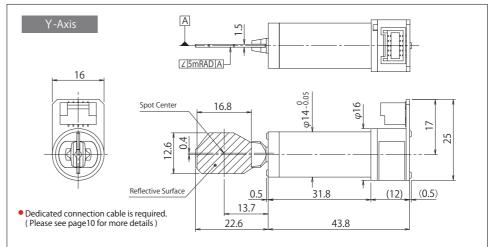
^{*} The values of the specification are based on the combination of Citizen Chiba Precision Servo Driver and Mirror.

^{*} All angles shown are mechanical angles.

* We can provide the data including step response time by preferred combination of the mirror size and the scanner. Please contact our sales representatives for details. (Some combinations may not be available.)

■ GVM-1445L

■ This drawing indicates the combination with GM1 mirror assembly.

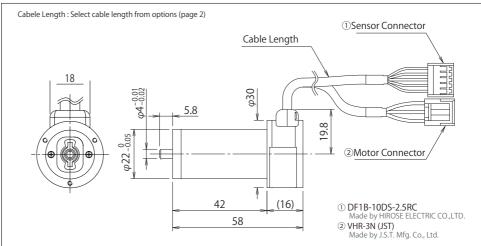

(Unit: mm)

Connector Pin Assignment

SM10B-ZPDSS-TF (J.S.T.)				
Pin No.	Function			
1	A			
2	В			
3	PD COM			
4	AGC RETURN			
5	AGC IN			
6	SHIELD			
7	SHIELD			
8	SHIELD			
9	- MOTOR WINDING			
10	+ MOTOR WINDING			

Items	Unit	GVM-1445L
Maximum Scan Angle (Mechanical Angle)	deg mech.	± 20
Rotor Inertia	g·cm²	0.095
Coil Resistance	Ω	1.6 ± 10%
Coil Inductance	mH	0.1 ± 10%
Torque Constant	mN·m/ A	5.04 ± 10%
Back EMF Voltage	mV/ deg/ sec	0.088 ± 10%
Peak Current	A	12 (Maximum)
Maximum Coil Temperature	°C	110
Weight	g	40

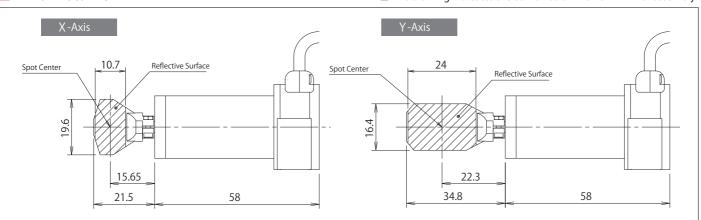
Repeatability		μ rad	8
Non-Linearity	(±10°)	%	0.1 (Maximum)
Offset Drift		μ rad/ °C	10 (Maximum)
Gain Drift		ppm/°C	50 (Maximum)
Step Respons	e Time	μsec	*Please see the caution below
0	Common Mode	μΑ	350
Output Signal	Differential Mode	μ A/ deg	11
Input Signal		mA	30


^{*} The values of the specification are based on the combination of Citizen Chiba Precision Servo Driver and Mirror.

^{*} All angles shown are mechanical angles.

* We can provide the data including step response time by preferred combination of the mirror size and the scanner. Please contact our sales representatives for details. (Some combinations may not be available.)

■ GVM-2260



■ Mirror + Scanner

■ This drawing indicates the combination with GM2 mirror assembly.

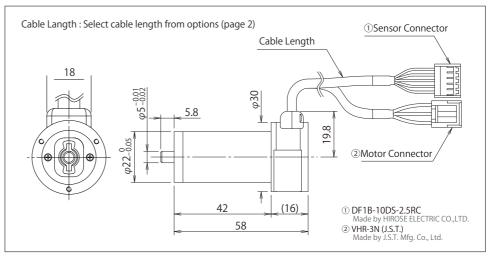
(Unit: mm)

Items	Unit	GVM-2260
Maximum Scan Angle (Mechanical Angle)	deg mech.	± 20
Rotor Inertia	g⋅cm²	0.52
Coil Resistance	Ω	1.1 ± 10%
Coil Inductance	mH	0.1 ± 10%
Torque Constant	mN∙m/ A	8 ± 10%
Back EMF Voltage	mV/ deg/ sec	0.14 ± 10%
Peak Current	A	21.8 (Maximum)
Maximum Coil Temperature	°C	110
Weight	g	155

Repeatability		μrad	8
Non-Linearity	(±10°)	%	0.1 (Maximum)
Offset Drift		μ rad/ ° C	10 (Maximum)
Gain Drift		ppm/°C	50 (Maximum)
Step Response	e Time	μsec	*Please see the caution below
Output Signal	Common Mode	μΑ	350
Output signal	Differential Mode	μ A/ deg	11
Input Signal		mA	30

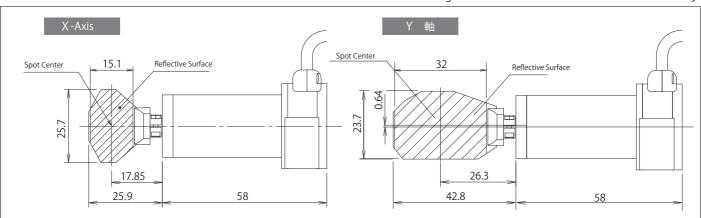
^{*} The values of the specification are based on the combination of Citizen Chiba Precision Servo Driver and Mirror.

* All angles shown are mechanical angles.


* We can provide the data including step response time by preferred combination of the mirror size and the scanner. Please contact our sales representatives for details.

(Some combinations may not be available.)

GVM-2280

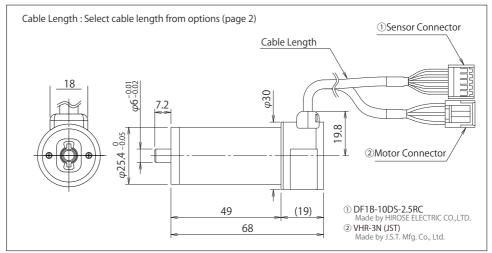

(Unit: mm)

■ Mirror + Scanner

■ This drawing indicates the combination with GM4 mirror assembly.

ltems	Unit	GVM-2280
Maximum Scan Angle (Mechanical Angle)	deg mech.	± 20
Rotor Inertia	g·cm²	1.2
Coil Resistance	Ω	1.2 ± 10%
Coil Inductance	mH	0.19 ± 10%
Torque Constant	mN·m/ A	15 ± 10%
Back EMF Voltage	mV/ deg/ s	0.25 ± 10%
Peak Current	A	20 (Maximum)
Maximum Coil Temperature	°C	110
Weight	g	170

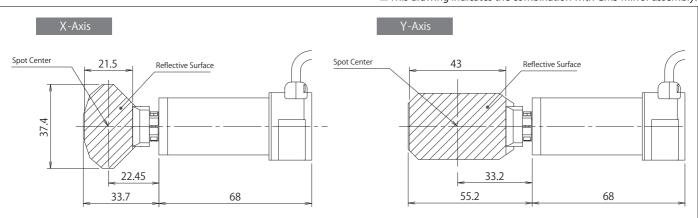
Repeatability		μ rad	8
Non-Linearity	(±10°)	%	0.1 (Maximum)
Offset Drift		μ rad/ °C	10 (Maximum)
Gain Drift		ppm/°C	50 (Maximum)
Step Respons	e Time	μsec	*Please see the caution below
Output Canal	Common Mode	μΑ	350
Output Signal	Differential Mode	μ A/ deg	11
Input Signal		mA	30


^{*} The values of the specification are based on the combination of Citizen Chiba Precision Servo Driver and Mirror.

^{*} All angles shown are mechanical angles.

* We can provide the data including step response time by preferred combination of the mirror size and the scanner. Please contact our sales representatives for details. (Some combinations may not be available).

■ GVM-2510



■ Mirror + Scanner

■ This drawing indicates the combination with GM5 mirror assembly.

(Unit: mm)

Specifications

Items	Unit	GVM-2510
Maximum Scan Angle (Mechanical Angle)	deg mech.	± 20
Rotor Inertia	g∙cm²	5.6
Coil Resistance	Ω	1.0 ± 10%
Coil Inductance	mH	0.3 ± 10%
Torque Constant	mN∙m/ A	32 ± 10%
Back EMF Voltage	mV/ deg/ sec	0.56 ± 10%
Peak Current	A	18.4 (Maximum)
Maximum Coil Temperature	°C	110
Weight	g	220

Repeatability		μrad	8
Non-Linearity	(±10°)	%	0.1 (Maximum)
Offset Drift		μ rad/ ° C	10 (Maximum)
Gain Drift		ppm/°C	50 (Maximum)
Step Response	e Time	μsec	*Please see the caution below
Output Signal	Common Mode	μΑ	350
Output Signal	Differential Mode	μ A/ deg	11
Input Signal			30

^{*} The values of the specification are based on the combination of Citizen Chiba Precision Servo Driver and Mirror.

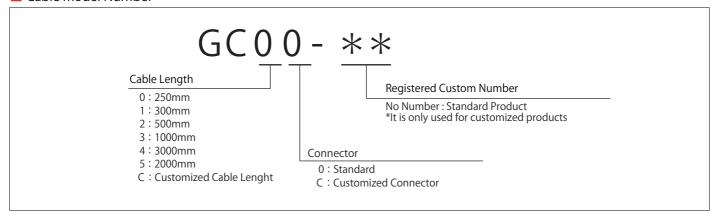
* All angles shown are mechanical angles.

^{*} We can provide the data including step response time by preferred combination of the mirror size and the scanner. Please contact our sales representatives for details. (Some combinations may not be available)

Galvanometer Optical Scanner

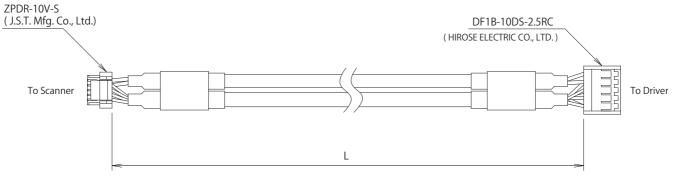
GVM-2260/ GVM-2280/ GVM-2510 / Connector Pin Sequence

Sensor Connector


DF1B-10DS-2.5RC (HIROSE)		
Pin No.	Function	
1	А	
2	В	
3	PD COM	
4	AGC RETURN	
5	AGC IN	
6	NC	
7	SHIELD	
8	NC	
9	NC	
10	NC	

■Motor Connector

VHR-3N (J.S.T.)		
Pin No.	Function	
1	Frame Ground	
2	— Motor Winding	
3	+ Motor Winding	


GVM-0930/ GVM-1445 / Dedicated Connection Cable

Cable Model Number

Cable Drawing

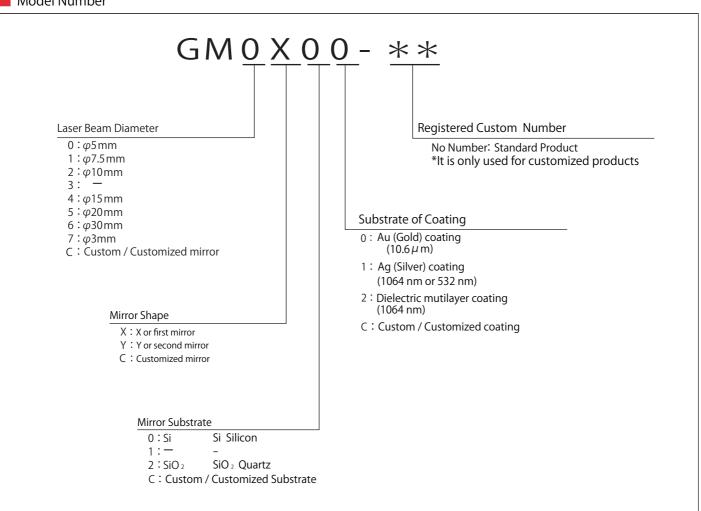
(Unit : mm)

Model	Length L (mm)
GC00	250
GC10	300
GC20	500
GC30	1000
GC40	3000
GC50	2000

Connector Pin Sequence

DF1B-10DS-2.5RC		
Function		
А		
В		
PD COM		
AGC RETURN		
AGC IN		
NC		
SHIELD		
SHIELD		
 MOTOR WINDING 		
+ MOTOR WINDING		

Mirror


■ Mirror Selection

Mirror	Substrate:	ςi	(Silicon)
101111101	Jubstiate.	JI.	(SIIICOLI)

Mirror Model		GM0	GM1	GM2	GM4	GM5	GM6	GM7
Laser Beam Diameter (mm)		φ5	φ 7.5	φ 10	φ 15	φ 20	φ 30	φ3
	GVM-0930S	0						•
	GVM-0930L	0						
	GVM-1445S	•	0					
Scanner	GVM-1445L			0				
	GVM-2260			•				
	GVM-2280			0				
	GVM-2510					•	0	
Holder Type	Fixed to shaft by adhesive			* 🗆				
	Fixed to shaft by screws							
Mirror Assembly Inertia (g·cm²)	X - Axis	0.012	0.072	0.35	1.1	5.7	35	0.0054
	Y - Axis	0.016	0.098	0.45	1.9	7.8	50	0.0059

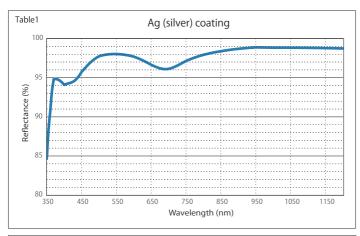
Recommended

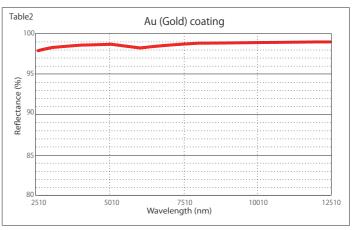
Model Number

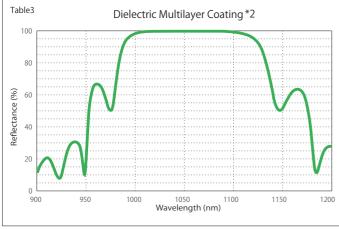
Available

^{**} If combining GVM-1445L with φ 10 mirror, the mirror holder will be fixed to the shaft by adhesive.

Galvanometer Optical Scanner


Mirror


■ Mirror Substrate / Recommended Coating


Mirror Model	Laser Beam Diameter	Mirror Substrate	Recommended Coating
GM0	φ 5	Si (Silicon)	Ag (Silver) Coating
GM1	φ 7.5	Si (Silicon)	Au (Gold)/ Ag (Silver) Coating
CM2	o 10	Si (Silicon)	Au (Gold)/ Ag (Silver) Coating
GIVI 2	GM 2 φ 10 S		Dielectric Multilayer Coating (For YAG 1064nm)
CMA	o 15	Si (Silicon)	Au (Gold)/ Ag (Silver) Coating
GM 4 φ 15	φισ	SiO ₂ (Quartz)	Dielectric Multilayer Coating (For YAG 1064nm)
CME	a 20	Si (Silicon)	Au (Gold) Coating
GM 5	φ 20	SiO ₂ (Quartz)	Dielectric Multilayer Coating (For YAG 1064nm)
CNAC	20	Si (Silicon)	Au (Gold) Coating
GM6	φ 30	SiO ₂ (Quartz)	Dielectric Multilayer Coating (For YAG 1064nm)
GM7	φ3	SiO ₂ (Quartz)	Ag (Silver) Coating

- You can select coating depending on the wavelength of the laser beam.
 - Au (Gold) Coating: Mainly for CO₂ laser (wavelength 10.6 μm)
 - Ag (Silver) Coating: Mainly for visible ray laser (wavelength: 532nm, 1064nm etc.)
 - Dielectric Multilayer Coating : Mainly for maximum reflectance with YAG laser (wavelength : 1064nm etc.)
 - *The coating layer of the Dielectric Multilayer Coating differs depending on the wavelength used.

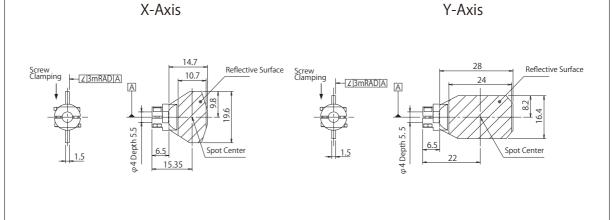
■ Coating-Reflectance Data (Incident Angle 45°)

- *1 Reflectance values in the line graph are simulated result and are not guaranteed. Please note that values may differ from the actual data.
- *2 Dielectric multilayer coating will be able to have high reflectance values by matching appropriate wavelength.

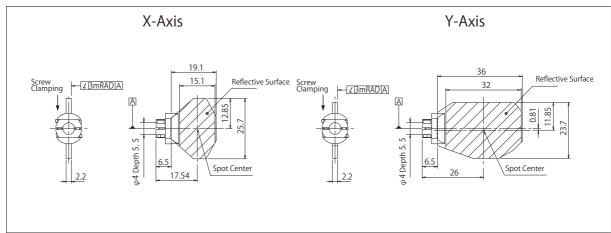
Table3 is a data with our standard wavelength. Please contact the sales representative for customization with different wavelengths.

Galvanometer Optical Scanner

Mirror

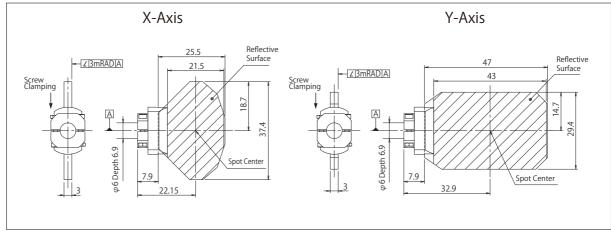

■ Mirror Assembly Drawing

*Please see page 5 for GM0 / page 6 for GM1 / page 3 or 4 for GM7


• GM2

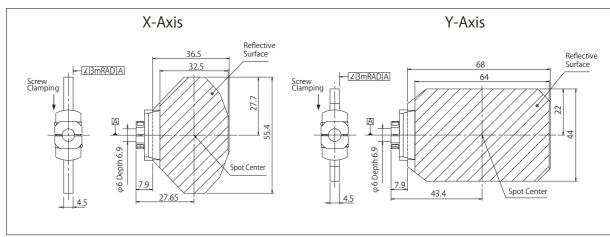
Laser Beam

Diameter φ 10


• GM4
Laser Beam
Diameter φ 15

• GM5

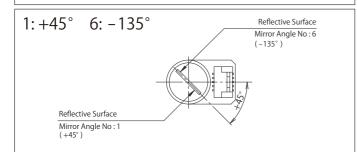
Laser Beam

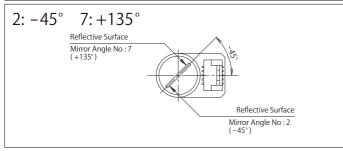

Diameter φ 20

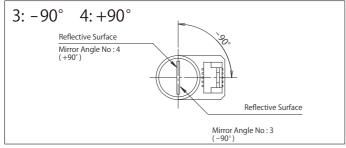
• GM6

Laser Beam

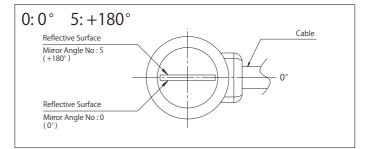
Diameter φ 30

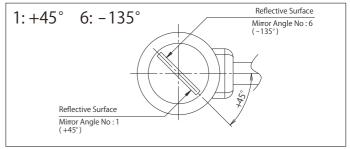


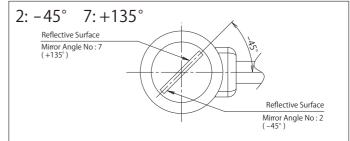

Mirror

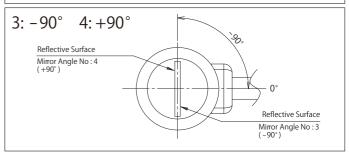

Mirror Mounting Angle

GVM-0930 / GVM-1445


0:0° 5:+180° Connector Reflective Surface Mirror Angle No : 5 $(+180^{\circ})$ Reflective Surface Mirror Angle No : 0







GVM-2260 / GVM-2280 / GVM-2510

 $^{^*}$ All mirrors above are designed with mechanical angle \pm 10 $^\circ$ for each laser diameter. If you would like to use it at an angle more than \pm 10 $^\circ$, please contact our sales representatives for details.

GVM-1445S- 0000M-**

Scanner Type 0930S / 0930L 1445S / 1445L 2260 / 2280 / 2510 Scanning Angle (Mechanical Angle) Bumpers set for $\pm 10^{\circ}$ scanning Bumpers set for $\pm 15^{\circ}$ scanning Bumpers set for $\pm 20^{\circ}$ scanning $0:\pm10^{\circ}$ 1: ±15° 2: ±20° C : Custom Bumpers set for customized angle Cable Length 0: GVM-0930, GVM-1445 / Connectors are placed on board 1:500mm 1000mm 3:2000mm 4:3000mm

5:300mm C: Custom

Form of the Top Shaft

0: Straight (GVM-2260, GVM-2280 and GVM-2510 are all 0)

Customized cable length

With Mirror Holder (GVM-0930 S/L and GVM-1445 S/L are all 1)

C: Custom / Customized Shaft

Registered Custom Number

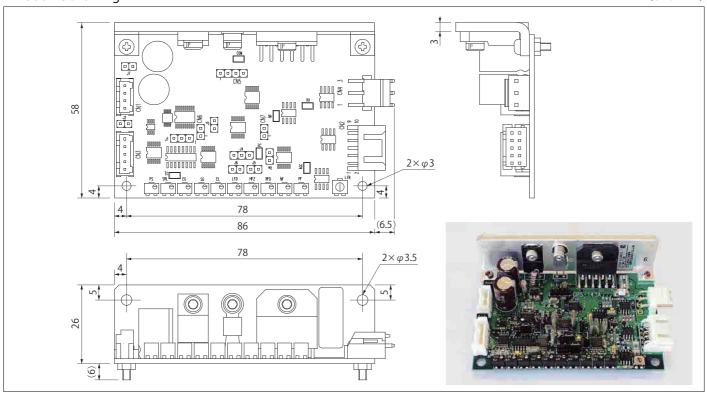
No Number: Standard Product *It is only used for customized products

With or Without Mirror

0: Without mirror M: With mirror

Mirror Angle Against Cable

 $0 \div 0^{\circ}$ (It is also 0 when without mirror) 1:+45° +45° to connector – 45° to connector 2:-45° 3:-90° - 90° to connector $+\,90^{\,\circ}$ to connector 4:+90° 5:+180° + 180° to connector - 135° to connector 6:-135°


 $7:+135^{\circ}$ + 135° to connector

C: Custom Customized angle to connector

Driver

■ Outline Drawing (Unit: mm)

Specifications

Model		GVD0 - ***** - **	
Power	Power Voltage	± 15V or ± 24V	
	Maximum Operating Current	2.5A RMS	
	Peak Current *	10A	
Command Cianal Innut	Voltage (Differential)	±3V/±5V/±10V	
Command Signal Input	Input Impedance	$20k\Omega$ (At differential input)	
Monitor Output	Position Output	$\pm 1.5 \text{V} / \pm 2.5 \text{V} / \pm 5 \text{V}$	
	Input Signal	Servo ON	
	Output Signal	Ready	
Function		Over heating	
runction	Protection	Over positioning	
	Protection	Over current	
		Sensor error	
Ambient Temperature Range		0°C to +50°C	
Dimension		93 x 57.5 x 31 mm	
Weight		60g (with heat sink)	

Our Galvanometer Optical Scanner Servo Drivers (GVD Series) have two options in control system: P Control and PI Control Systems. Please read the following description of the control systems and select one according to your application.

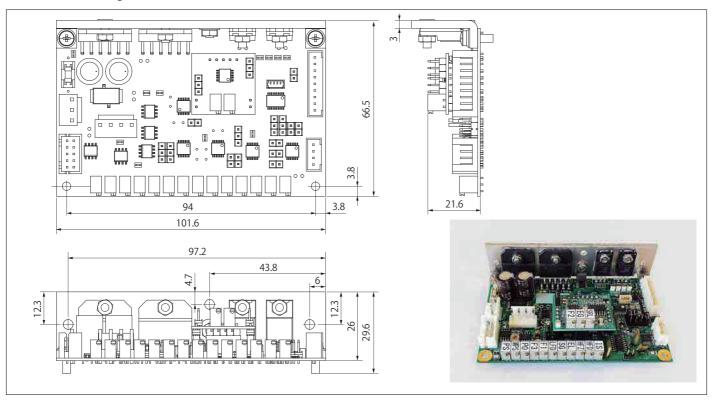
P Control:

This control will output the signal proportional to the error which is obtained by comparing position feedback and command signal. The scanner responds fast and stabilizes position quickly because servo closed loop band becomes high by not integrate the time. In case of distortion or friction, a position error may occur against the command.

PI Control:

This control will output the time-integrated signal of the error which is obtained by comparing the position feedback with the command signal. Therefore, it is possible to maintain a stationary state (a state with extremely small position error) regardless of distortion or friction. This integration provides very high position repeatability.

Please select P Control if you are focusing on high speed stabilization time, or PI Control for high position repeatability.


^{*}Peek current may have limit, depends on Galvo type and power supply voltage.

Driver

Outline Drawing

(Unit: mm)

Specifications

Model		GVD1 - ***** - **
	Power Voltage	±15V or ±30V
Power	Maximum Operating Current	5.0A RMS
	Peak Current *	11.5A
	Voltage (Differential)	±3V /±5V /±10V
Command Signal Input	Input Impedance	20 k Ω (At differential input)
Monitor Output	Position Output	±1.5V /±2.5V /±5V
	Input Signal	Servo OFF
	Output Signal	Position, Speed, Current, Position error, Alarm, 90% Load warning
		Over heating
Function		Over positioning
		Over current
	Protection	Sensor error
		Power source voltage
		Alarm
		90% Load warning
Ambient Temperature Range		0°C to +50°C
Dimension		101.6 x 66.5 x 30.8 mm
Weight		90g (with heat sink)

Our Galvanometer Optical Scanner Servo Drivers (GVD Series) have two options in control system: P Control and PI Control Systems. Please read the following descriptions of the control systems and select one according to the application.

P Control:

This control will output the signal proportional to the error which is obtained by comparing position feedback and command signal.

The scanner responds fast and stabilizes position quickly because servo closed loop band becomes high by not integrate the time.

In case of distortion or friction, a position error may occur against the command.

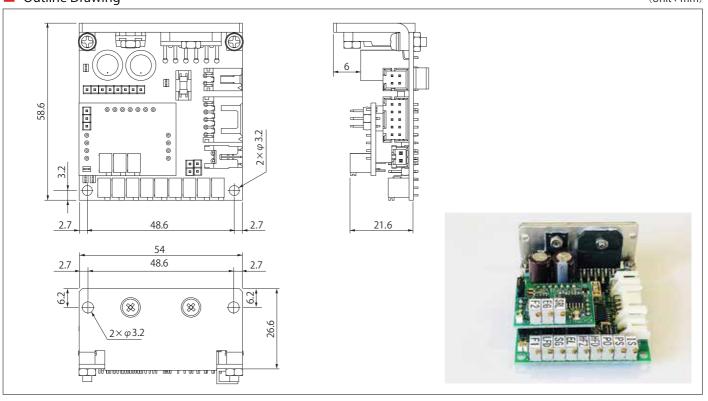
PI Control

This control outputs the time-integrated signal of the error which is obtained by comparing the position feedback with the command signal.

Therefore, it is possible to maintain a stationary state (a state with extremely small position error) regardless of distortion or friction.

This integration provides very high position repeatability.

Please select P Control if you are focusing on high speed stabilization time, or PI control for high position repeatability.


^{*}Peek current may have limit, depends on Galvo type and power supply voltage.

Driver

GVD2

Outline Drawing

(Unit: mm)

Specifications

Model		GVD2 - ***** - **	
	Power Voltage	± 15V or ± 24V	
Power	Maximum Operating Current	2.5A RMS	
	Peak Current*	10 A	
ommand Signal Input	Voltage (Differential)	\pm 3V $/\pm$ 5V $/\pm$ 10V	
Similaria Signal impac	Input Impedance	$20k\Omega$ (At differential input)	
Monitor Output	Position Output	± 1.5V / ± 2.5V / ± 5V	
	Input Signal	Servo OFF	
	Output Signal	Position, Speed, Current, Ready Position error	
unction		Over heating	
	Duntanting	Over positioning	
	Protection	Over current	
		Sensor error	
Ambient Temperature Range		0°C to +50°C	
Dimension		58.6 x 54 x 31.6 mm	
Weight		55g (with heat sink)	

Our Galvanometer Optical Scanner Servo Drivers (GVD Series) have two options in control system: P Control and PI Control Systems. Please read the following description of the control systems and select one according to the application.

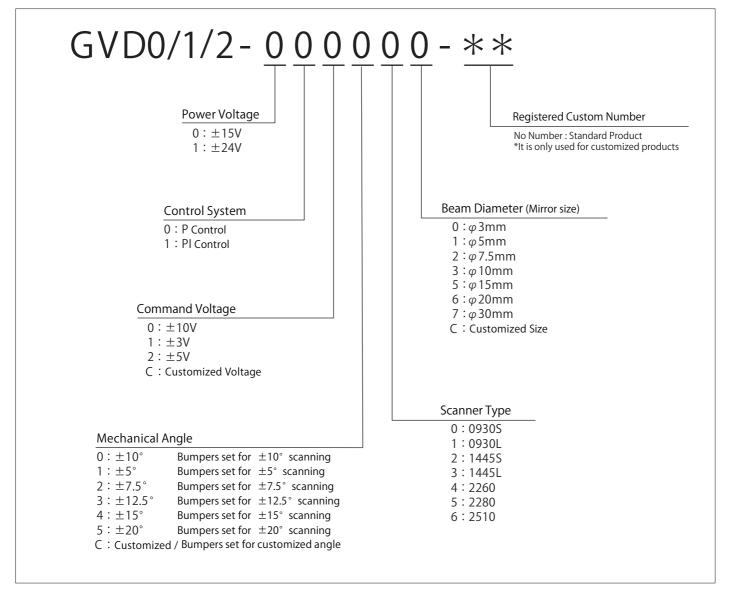
P Control:

This control will output the signal proportional to the error which is obtained by comparing position feedback and command signal.

The scanner responds fast and settles position quickly because servo closed loop band becomes high by not integrate the time. In case of distortion or friction, a position error may occur against the command.

PI Control:

This control outputs the time-integrated signal of the error which is obtained by comparing the position feedback with the command signal.


Therefore, it is possible to maintain a stationary state (a state with extremely small position error) regardless of distortion or friction.

This integration provides very high position repeatability.

Please select P Control if you are focusing on high speed of settling time, or PI control for high position repeatability.

^{*}Peek current may have limit, depends on Galvo type and power supply voltage.

Model Number

↑ Cautions for Handling Our Products

Our scanners, drivers, and accessories are precision-machined products and it is assumed that all the cautions and warnings listed below are correctly understood and handled.

Please do not install, operate, maintain or inspect the product until you have a full knowledge on the product, safety information and cautions.

The minimum cautions required for your safety are as follow.

[Caution When Unpacking]

• When you received the product, please check the package for damage and if it is the product you ordered.

[Cautions for Handling]

- 1. Be sure to check the wiring before turning on the power. Failure to follow this caution may result in mechanical damage and/or operation error.
- 2. The cables or lead wires should not be damaged, stressed excessively, loaded heavily, or pinched. Failure to follow this causion may result in malfuncition and/or the products would not operate correctly.
- 3. Since they are small precision products, there are many parts where strength is secured by adhesion. Please handle with care such as do not apply impact or stress to the joints of the gear and encoder. Failure to follow this caution may result in injury and/or malfunction.
- 4. Please do not apply impact or radial load to the shaft. Failure to follow this caution may result in malfunction.
- 5. Please process the lead wire in an anti-static environment.
- 6. Failure to follow this caution, such as screws are too long or fixing torque excessive, may result in a malfunction for mechanical parts inside may be deformed or destroyed.
- 7. Please do not use or store the product in an environment subject to corrosive gas or any other hazardous gas. Also, please keep dust, water or oil out of the product.
- 8. If smoke, abnormal heat generation, strange odor, abnormal noise, abnormal vibration, etc. occur, please stop operating immediately and turn off the power.
- 9. When mounting the driver and other optional items, please use screws that conform to the specifications in the outline drawing. Especially, if the screw for fixing the driver is too long, it may damage the board, causing malfunction, short circuit, or fire.
- 10. Since the life of the linear actuator and its accessories varies greatly depending on the load conditions, operating mode and operating environment, please check the operation of the actual machine thoroughly.

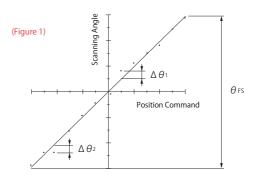
[Product Warranty]

- 1. Duration of this warranty is one year from the date of delivery. If the customer discovered a defect in material and workmanship within this period, we will repair the product for free charge. Please note that it would take several days to repair.
- 2. For the defect caused by "misuse" or "mishandling" by any party, or the defect caused later than one year from the date of delivery, the customer is responsible for repairing charges. We will repair the product only if the customer carried it in or sent it back to our company address by customer's expense.

Please note that since it would take several days to repair, please consider to purchase spare parts if installing our product into an important system.

3. We are not liable to the damages caused while in transit. Please pack the product with sufficient cushioning materials to prevent external vibration.

[Other]


- 1. If you got any problem with our product, please do not disassemble it and keep it as it is. Then please contact our sales representatives and follow fhe intstrutions.
- 2. Information listed above is subject to change without notice. For further information, please contact our sales representatives or our authorized distributors.

Terms and Definitions

• Non-Linearity (Figure 1)

This is a ratio of error against ideal scan angle. Measure the angle between each command and find the linear approximation at first. Then calculate non linearity by setting approximation of full-scale value as the denominator and difference of peak value from approximation as the numerator.

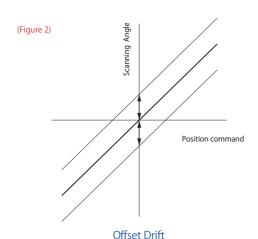
Non-Linearity =
$$\frac{|\Delta \theta_1| + |\Delta \theta_2|}{\theta_{FS}} \times 100 \, (\%)$$

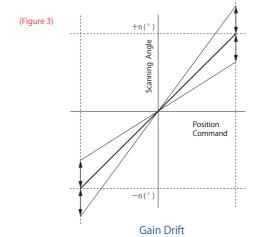
• Offset drift (Figure 2)

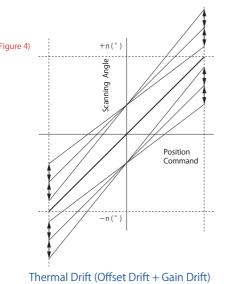
This is an amount of offset (position) which changes by ambient temperature. Fix the scan angle to 0° then calculate the amount of positional change by changing ambient temperature from 10°C to 50°C .

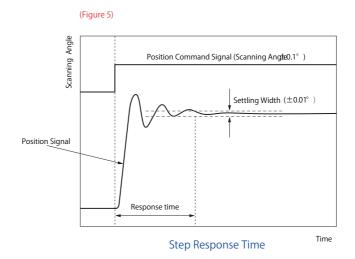
• Gain drift (Figure 3)

This is an amount of gain (positional scale) which changes by ambient temperature. Measure the amount of positional change by changing ambient temperature from 10°C to 50°C at maximum scan angle \pm n°.


• Thermal drift (Figure 4)


This is the maximum amount of positional change which is the sum of offset drift and gain drift.


• Step response time (Figure 5)


This is the time measured from the input of position command signal to start scanning until the mirror is stabilized to the final position.

* In this catalogue, response time is determined as when the mirror is settled within $\pm 0.01^{\circ}$ difference in width by scanning angle $\pm 0.1^{\circ}$ in final position.

Memo

Memo

Product Lineup

Coreless DC motors

Brushless motors

AC servomotors

Linear actuators

Galvanometer optical scanners

Gearheads

Tachometer Generator/ Encoder

■ Application for Solution

Please visit our website for more details.

https://ccj.citizen.co.jp/case

Semiconductor Equipment :

Lithography Machine / Wafer Inspection System / Turbo Molecular Pumps / Wafer Dicing Machine / Conveyance System for Semiconductor Factories

■ Medical and Clinical Equipment:

Denture Processing Machine / Down Flow Masks for Virus Protection / OCT / Ultrasonic Diagnostic System / Lens Edger / Cancer Treatment / Autoclavable Medical Equipment / Robotic Exoskeleton

■ Beauty and Cosmetic Equipment:

Handpieces for Nail Art

■ Measuring and Analyzing Equipment:

LiDAR / Electron Microscope / Confocal Microscope / Railway Track Measuring Device / Surface Roughness Tester

■ Factory Automation and Robots :

Laser Marking Machine / Motors for Robots / Grinding Machine / Optical Disk Equipment

CITIZEN

CITIZEN CHIBA PRECISION CO., LTD.

1811-3, Yoshihashi, Yachiyo, Chiba 276-0047, Japan Telephone: +81-47-458-7935 / Facsimile: +81-47-458-7962 Website (contact): https://ccj.citizen.co.jp/en/contact

^{*}Technical data and products are subject to change without prior notice. For further information, please contact our sales representatives or authorized distributors.